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　　Abstract　　The asymptot ic boundary condition to solve the t ime-dependent S chrödinger equat ion for a short-range model potential
in an intense laser field is presen ted.The condition is obtained by means of the asymptotic behavior of the short-range model potent ial in

the suff icient ly large distance and Fou rier transformation , and then the time-dependent Schrö dinger equation is discretized into an inhomo-

geneous linear canonical equation.The inhomogeneous linear canonical equation is solved using the symplect ic algori thm.The calculated
w avefunctions , t ime-evolut ion of the populat ion on the bound state , and the high-order harmonic generat ion verify that our numerical

method is reasonable and ef fective.

　　Keywords:　asymptotic boundary condition , high-order harmonic generation , symplectic algori thm.

　　With the devolvement of laser techniques , laser-
atom interaction has become one of the very interest-
ing topics[ 1 , 2] .In recent years , a number of experi-
ments on intense laser pulses probing laser-atom inter-
action have produced many new results , such as mul-
tipho ton ionizat ion(MPI)rates , above-threshold ion-
ization (ATI) and high-order harmonic generation
(HOHG)

[ 3 ～ 5]
.The high-o rder harmonics up to or-

der 300(w ith the maximum energy about 0.5 keV)
have been observed in recent experiments in helium

atom
[ 6 , 7]
, which has been in the “water windows”

range.A lo t of theoretical wo rk has been developed in
understanding laser-atom interaction , for example ,
one dimensional binding po tential in space has the

form V(x)=-Z/ x
2+a2 , -∞<x <∞, where

Z is the ef fective charge and a is a short-range cut-of f
parameter.This is a quasi-Coulombic or “ sof t”
Coulomb potential.Z and a are introduced to remove

the singularity at origin and to adjust the depth of the

potential well , and most properties of a real atom can
be produced by adjusting the parameters Z and

a
[ 8 , 9] .The ionization rates and harmonic generation
for a hydrogen atom w ere calculated by solving the

time-dependent Schrödinger equat ion[ 10] and by the
state-specific expansion approach[ 11] .The M PI rates ,
the spect ra of harmonic generation , above-threshold
ionization and photoelect ron angular distribution were

computed f rom the response of He to st rong laser

pulses[ 12 ,13] .There are many methods[ 8 ～ 13] to nu-
merically solve the time-dependent Schrödinger equa-
tion in an intense laser field.Owing to the complexity
of an atom in a laser field , the artificial boundary con-
ditions , e.g.an absorber[ 14] o r a mask function[ 15] ,
are often employed to calculate the time-dependent
Schrödinger equation so as to eliminate the ref lect ion
of the wavefunction on the boundaries.

As we know , if we do no t consider the effect of
atomic potential , o r the atomic potential is so small
that it can be neglected , the atom in a laser field is e-
quivalent to the motion of the electron wavepacket in

the laser field.In this paper , we consider the behav-
io rs and high-order harmonic generation for a short-
range model potential in the intense laser f ield.Be-
cause the potential is short-range , we neglect the ef-
fect of the short-range potent ial in the suff iciently
large distance.Based upon this idea , the asymptotic
boundary conditions for solving the time-dependent
Schrödinger equation of a short-range model potent ial
in an intense laser field is developed by using Fourier

t ransformation in the suf ficiently large distance , and
then the time-dependent Schrödinger equation is dis-
cretized into an inhomogeneous linear canonical equa-
tion by using the asymptotic boundary conditions.



Thus the solutions can be obtained by using the sym-
plectic algorithm.

1　Asymptotic boundary conditions

In the leng th gauge , the one-dimensional time-
dependent Schrödinger equation of the atom in the

laser f ield reads(in atomic uni ts)

i
 
 t
ψ(x , t)= -1

2
 
2

 x2
+V(x)-ε(t)x ψ(x , t),

(t ≥0 , -∞< x <+∞), (1a)

ψ(x ,0)=φ(x), 　∫
∞

-∞
|φ(x)|

2
d x =1 ,

(-∞< x <+∞), (1b)
w ith the short-range model potential g iven by

V(x)=
-U 0

cosh2(αx)
. (2)

This short-range model po tential has the follow-
ing properties:

I.V(x)=V(-x), to ensure that pari ty is a
g ood quantum number.

II.When  x  is no t very big ,  V (x) 
monotonously decreases.

III.There is a fini te number of bound states.If

w e choose α=2/( 17 -1), U 0 =2α
2 and S =

1
2( 1+8U 0/α

2
-1), there are two bound states

for this short-range potential.The energies are En =

-
α2

2
(S -n)

2
, n =0 , 1.Thus E 0 =-0.5 , E 1 =

-0.0646603 , and the corresponding eigenfunctions
are

ψ0 =A 0[ 1 -tanh
2(αx)]

-2E
0

2α , (3)

ψ1 =A 1 tanh(αx)[ 1 -tanh
2(αx)]

-2E
1

2α , (4)

where A 0 and A1 are the normalized constant.We
add the laser-atom interaction in dipole approximation

ε(t)x =ε0 f(t)cos(ω0 t)x . (5)

The vector potential A(t)is related to the elect ric-
free ampli tude by

ε(t)=-
d
dt A(t)=ε0 f(t)cos(ω0 t), (6)

where ε0 is the peak intensi ty of the laser , f(t)is
the function that describes the temporal shape of the

pulse and the light is assumed to be linearly polarized ,
and f(t)=sin2(Ψt).

In o rder to obtain the w avefunction ψ(x , t), we
must solve Eq.(1)numerically in the space inf inite
domain(-∞, +∞).However , it is impossible to
solve the equat ion numerically to the infini te bound-
ary , and the computat ion must be implemented in the
fini te domain.Thus the difficulty to direct ly solve the
t ime-dependent Schrödinger equation of a sho rt-range
model potential in an intense laser f ield is to find the

proper boundary condi tions.

In this section , we concentrate upon the con-
st ruction of the asymptotic boundary condi tions.The
initial condit ion is taken as the ground state eigen-
function , i.e.φ(x)=ψ0.Suppose that there is a
suf ficiently large parameter X 0 >0.If  x ≥X 0 ,
then the po tential V(x)and the initial condit ion
φ(x)are very small and can be neglected , because
the potential V(x)is short-range , which at tenuates
monotonously w ith the increase of x .We omit the
ef fect of the sho rt-range po tential in the suff iciently
large distance.Eq.(1a)becomes

i
 
 t
ψ(x , t)= - 1

2
 
2

 x 2
-ε(t)x ψ(x , t),

(t ≥0 , -∞< x <+∞). (7)
Eq.(7)and Eq.(1b) can be solved by Fourier
t ransformation.After Fourier t ransfo rmation , Eq.
(7)and Eq.(1b)can be rew rit ten as:

i   ψ(ω(t), t)
 t

+iε(t)  ψ(ω(t), t)
 ω(t)

　　=
1
2
ω2 ψ(ω(t), t),

 ψ(0 , ω(0))= φ(ω(0)).

(8)

It s solution is

 ψ(ω(t), t)= φ(ω(0))exp -
i
2 q(t)

·exp(-iα(t)ω(0))

·exp -
i
2
ω2(0)t .

After inverse Fourier t ransformation , we can obtain
the solution of Eq.(7)

ψw(x , t)=
1-i

2 πt
exp -iA(t)x -

i
2
q(t)

·∫
∞

-∞
φ(x′)exp

i(x -α(t)-x′)2

2t
d x′,

(9)

where A(t)=-∫
t

0
ε(t′)dt′is the vecto r potent ial ,

α(t)=-∫
t

0
A(t′)dt′and q(t)=∫

t

0
A
2(t′)d t′.

Eq.(9)is the Volkov function , which expresses an
elect ron w avepacket in a laser field.For  x ≥X 0 ,
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φ(x)=0 , then

ψw(x , t)= 1-i
2 πt

exp -iAx -i q
2

·∫
+X

0

-X
0

φ(x′)exp i
(x -α-x′)2

2 t
d x′.

Because x >X 0 is a sufficient ly large real number ,
when x′∈ [ -X 0 , X 0 ] , the integral function is a
rapidly oscillating function.According to the phase
integral method[ 16] , we can obtain

∫
+X

0

-X
0

φ(x′)exp i
(±X -α- x′)2

2t
d x′

　　 ～ πt(1 +i)φ(±X -α).
Thus Eq.(9)can be w rit ten as the form at x =
±X 0 ,

ψ(x , t)|x=±X
0
=exp -iA(±X 0)-i

q
2

·φ(±X 0 -α). (10)

Let us now consider the behavior of the wave-
function of Eq.(1)on the boundaries.For the short-
range potential (2), we can f ind a suf ficiently large
parameter X 0 >0 , if  x ≥X 0 , then V(x)and
φ(x)are very small.Thus Eq.(10)reflects the
asymptotic behavior of the w avefunction of Eq.(1)
w ith the initial w avefunction φ(x).That is to say ,
in the domain(-∞, X 0] and [ X 0 , +∞), the solu-
tions of Eq.(1)are the same as the solutions of Eq.
(7)and Eq.(1b).Therefore , on the suf ficiently
large boundary x =-X 0 and x =X 0 , Eq.(10)can
be used as the boundary conditions of Eq.(1).We
call Eq.(10)the asymptotic boundary conditions.
Thus Eq.(1)can be solved numerically in the finite
domain [ -X 0 , X 0] by using the asympto tic bound-
ary conditions(10).

Note that if the initial w avefunction φ(x)is
normalized , the w avefunction ψ(x , t)is also normal-

ized∫
+∞

-∞
 ψ(x , t) 2d x =1.Therefo re , the norm of

the w avefunction inside the boundaries is given by

N =∫
+X

0

-X
0

|ψ(x , t)|2d x

=1-∫
-X

0

-∞
|ψ(x , t)|2d x

-∫
+∞

+X
0

|ψ(x , t)|2d x ≤1. (11)

Eq.(11)results from the elect ron w avepacket mov-
ing outside the boundary.In the computat ion the
boundary is much larger than the maximum radius of

the quiver mo tion of the electron , the probability of
the elect ron outside the boundaries is very small , and
the electron that has gone outside the boundaries is

regarded as ionization
[ 14]
.Thus w e ignore the contri-

butions of the wavefunction outside the boundaries in

the follow ing computat ion.This is a good approxima-
tion in case that the boundaries are properly large.

2　Numerical recipe

The fundamental theorem of Hamiltonian me-
chanics says that the time-evolution of the Hamiltoni-
an sy stem is the evolution of symplectic t ransforma-
tion.In this sense , we say that the Hamiltonian sy s-
tem has a symplectic structure.Therefore , Ruth

[ 17]

and Feng
[ 18]

presented the symplectic algori thm for

solving the Hamiltonian system , and found a new
method fo r solving the Hamiltonian sy stem .

Symplectic algori thm is a difference method that

preserves the symplectic st ructure , and is a better
method in the long-time many-step calculation and
can preserve the st ructure of the system.

At present , the study and applicat ion of sym-
plectic algorithm has been developed[ 19 ～ 25] .Fo r ex-
ample , symplectic algorithm is used to calculate the
w ater w ave equation , Kdv equation , Schrödinger e-
quation , Celestial mechanics equation and so on.

We have presented the symplectic scheme-matrix
eigenvalue method and the symplectic scheme-shoot-
ing method fo r solving the time-independent
Schrödinger equation recently

[ 26～ 28]
, and demon-

st rated that our numerical method is stable and ef fec-
tive for solving the eigenvalue of the time-independent
Schrödinger equation.

We can also use the symplectic algori thm to solve

Eq.(1)with the boundary condit ions (10).Let
ψ(x , t)=q(x , t)+ip(x , t), U(x , t)=V(x)-
ε(t)x .Suppose N is a sufficient ly large posit ive in-
teger , the whole space(-X 0 , +X 0)can be divided
into 2N equal segments , and the leng th of each seg-
ment is h =X 0/ N.Denoting xj=jh , j=-N , -N

+1 , …, -1 ,0 ,1 , … , N -1 , N , such that boundary
conditions(10)can be w rit ten as:

ψ(t , -X 0)=q-N +ip-N ,

ψ(t , +X 0)=qN +ipN .
(12)

Substi tuting the symmetry dif ference quo tient for the

partial derivat ive , we have
 2ψ
 x 2
=
ψj-1-2ψj+ψj+1

h
2 .
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Eq.(1)can be discretized into the follow ing (2N -
1)-dimensional Hamiltonian inhomogeneous linear

canonical equation
[ 29]

P
·
=-SQ +Y 2 ,

Q
·
=SP -Y 1 ,

(13)

where P =(p-N+1 , …, p -1 , p0 , p1 , …, pN-1)
T
,

Q =(q-N+1 , …, q-1 , q0 , q1 , …, qN-1)
T , Y 1 =

1

2 h2
(p-N , 0 , … ,0 , pN)

T , Y 2 =
1

2h2
(q-N , 0 , …, 0 ,

qN)
T and “T” denotes the t ransposed matrix , S is a

symmetry matrix

S =

U-N+1 +
1

h
2 -

1

2h2
0 0 … 0

-
1

2h2
U-N+2 +

1

h
2 -

1

2h2
0 … 0

0    
    0

0 … 0 -
1

2h2
U N-2 +

1

h
2 -

1

2 h2

0 … 0 0 -
1

2h2
UN-1 +

1

h
2

.

If w e let Z =(P T , Q T)T , Y =(Y
T
1 , Y

T
2)

T , then in-

homogeneous linear canonical equation can be w rit ten

as the form

dZ
d t
=GZ -J-1 Y =J

-1
CZ -J-1Y , (14)

where G=
0 -S

S 　0
=J

-1
C , J =

　0 I

-I 0
, C=

S 0

0 S
.The solut ions of Eq.(14)are

Z(t)=g
0 , t
G Z 0 -∫

t

0
g
τ, t
G J

-1
Y(τ)dτ. (15)

In particular , the time-evolution f rom one time to an-
other is

Z
k+1 =g

t
k
, t
k+1

G
Z
k -∫

t
k+1

t
k

g
τ, t

k+1

G
J
-1
Y(τ)dτ, (16)

where g
τ, t
G =exp ∫

t

r
G(t)dt is a symplectic t rans-

formation.We have recent ly presented the symplectic
algori thm for solving the inhomogeneous linear canon-
ical equation(14), and in Ref.[ 29] we give a tw o-
o rder symplectic scheme for solving the inhomoge-
neous linear canonical equation (14).From Eq.
(16), we can know that the no rmalization of the sys-
tem is conserv ative if there is no inhomogeneous term

J
-1

Y .Thus , the term of∫
t
k+1

t
k

g
τ, t

k +1

G
J
-1

Y (τ)dτ

expresses the escape of the electron w avefunction to

the outside boundaries from tk to tk+1.

3　Results and discussions

To investigate the behavio r and high-o rder har-
monic generat ion of the laser-atom interaction fo r

sho rt-range potential(2)in the intense laser field by
using the asympto tic boundary conditions (10)and
the symplectic algorithm , we select the sho rt laser
pulses of wavelength 828 nm (ω=0.055 a.u.)and
intensi ties in the range of 1.7 ×1015 ～ 7.00 ×
1015W/cm2 (ε0=0.05 ～ ε0=0.20 a.u.).The elec-
t ric field profile of the laser is taken as the square of

sine w ith 5 light periods.The initial state φ(x)is
taken as the wavefunction(3)of the g round state.

3.1　Evolution of the norm of the w avefunction in-
side the boundaries w ith t ime

To illustrate the numerical method , we fi rst
compute the evolution of the norm of the wavefunc-
tion inside the boundaries w ith time.From Eq.
(11), one know s that the motion outside the bound-
aries makes the no rm of the wavefunction inside the

boundaries less than or equal to 1.In the computa-
tion , we choose X 0=1000 a.u.The evolution of the
no rm of the w avefunction inside the boundaries w ith

t ime is show n in Fig.1.Fig.1(a)show s the norm
of the wavefunction for intensity ε0=0.05 a.u.The

no rm of the w avefunction is preserved to be 10
-7
,

because the intensity is very small and most elect rons

move inside the boundaries.Fig.1(b)show s the
no rm of the w avefunct ion for intensi ty ε0=0.14 a.u.
However , the norm of the w avefunction inside the

boundaries is only a litt le smaller than 1 after the

maximum of the laser field , which indicates that the
probability of the elect ron outside the boundaries is

very small and thus the calculation wi th the funct ion

inside the boundaries is convergent.
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Fig.1.　Evolution of the norm of the w avefunction inside the

boundaries wi th time.(a)ε0=0.05 a.u.;(b)ε0=0.14 a.u.

3.2　The behavio r of the w avefunct ion

Fig.2.　Spatial distributions of the wavefunct ion at t =500 a.u.,

ε0=0.05 a.u.(a)The real part of the wavefunct ion , (the inset shows

the result f rom -600 to -500);(b)the imaginary part of the wave-

function(the inset show s the result from 500 to 600).

To verify the numerical method , we also com-
pare the behavior of the w avefunct ion computed using

different boundary parameter X 0.Fig.2 shows the
spat ial dist ributions of the w avefunction at t=500 a.u.

and the peak intensity of the laser ε0 =0.05 a.u.
Tw o calculat ions w ith the boundaries of X0=600 a.u.
and X 0 =800 a.u.are carried out.The dot line is
calculated in the range of [ -800 , 800] and the solid
line is calculated in the range of [ -600 , 600] .The
two calculations yield results that are almost not dis-
tinguishable inside the boundaries.The insets show
the w avefunctions near the boundaries.It can be seen
from the f igures that the solid line and the do t line are

almost the same , which verifies that our numerical
method is reasonable and ef fective.

3.3　Probability densi ty  ψ 2(or modulus squared)
of the wavefunction

The numerical wavefunction may be the charac-
teristic of the above-threshold-ionization peak.Plots
of the probability density will usually reveal this pro-
cess.Fig.3 shows the probability densi ty  ψ 2 ver-
sus X at t=500 a.u.for dif ferent laser peak intensi-
ty.The plateau regions are about (-350 , 350),
(-450 ,450), (-700 , 700)and (-900 , 900)for
the laser peak intensity of ε0 =0.08 a.u., ε0 =
0.12 a.u., ε0=0.16 a.u., and ε0=0.20 a.u., re-
spectively.The higher the laser intensi ty is , the
w ider the plateau region is.Since electron emission
continuously takes place over the duration of the cal-
culation , for higher laser intensity , the probability
densities can ex tent to far distance.

3.4　Time evolution of the population on the g round
state (the initial state)and the bound state

The total time-dependent ionization populat ion
can be calculated by the formula:

P ion(t)=∫|〈ψk(x)ψ(x , t)〉|2dk
=1 -∑

bound
|〈ψn(x)|ψ(x , t)〉|

2 ,

where ψk(x)is any state of the cont inuum , ψn(x)is
the w avefunction of the bound state.The summat ion
is over all the bound state ψn(x)when the f ield has
been turned off.Thus the population of the bound
state is

Pbound(t)=∑
bound
|〈ψn(x)|ψ(x , t)〉|

2.

Because there are only two bound states for the short-
range potential , the population on the ground state
(the init ial state)and all bound states are

P 1b(t)=|〈ψ0(x)|ψ(x , t)〉|
2
,

Pb(t)=|〈ψ0(x)|ψ(x , t)〉|
2

+|〈ψ1(x)|ψ(x , t)〉|
2.
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In the computation , we choose X 0=1000 a.u., and
the time evolution of the population on the g round

state and all bound states w ith time are show n in

Fig.4 fo r short-range po tential in the laser field with

different peak intensity of the laser.In Fig .4 , the
dot line is the population of all bound states(i.e.the
g round state and the fi rst excited state)and the solid
line is the population of the ground state.It can be

Fig.3.　Probability density  ψ 2(or modulus squared of the wavefunct ion)vs X at t =500 a.u.(a)ε0 =0.08 a.u.;(b)ε0 =

0.12 a.u.;(c)ε0=0.16 a.u.;(d)ε0=0.20 a.u.

Fig.4.　Time evolution of the populat ion on the ground state and all bound states.(a)ε0=0.08 a.u.;(b)ε0=0.12 a.u.;(c)ε0=

0.16 a.u.;(d)ε0=0.20 a.u.
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seen from Fig.4 that the higher the laser peak inten-
sity is , the smaller the minimum probabili ty on the
bound state is , which reveals that the population on
the bound state decreases w ith the increase of the

laser peak intensity .For low laser peak intensity ,
most of the population is in the bound state , especial-
ly for ε0=0.08 a.u., it is very clear that the g round
state population is mo re than 0.93 and oscillates.
However , w ith the increase of the laser peak intensi-
ty , the bound state population becomes smaller and
smaller.For ε0=0.20 a.u.and t =300 a.u., the
bound state population is almost zero.This means
that most of the population is in the state of the con-
tinuum fo r higher laser peak intensity.

3.5　High-o rder harmonic generation

We also investig ate high-order harmonic of the
short-range po tential in the laser field.The dipole ac-
celeration is given by

d(t)=-∫
X
0

-X
0

ψ＊(x , t)
 V
 x
ψ(x , t)dx +E(t).

The Fourier transformation of d(t)is calculated by

d(ω)=
1

T 2 -T 1
1

ω
2∫

T
2

T
1

d(t)e
-iωt
d t.

The intensity of the high-o rder harmonic spectrum is
proportional to  d(ω) 2.In the computation , we
choose X 0=1000 a.u.Fig.5 displays the high-o rder
harmonic spect rum of short-range po tential in the
laser field with different peak intensity of the laser ,
the dist ribution of the harmonic spect rum exhibits the

same characteristic behavior , i.e.a rapid decrease for
the first few low-o rder harmonics , then a plateau
where all the harmonics have nearly the same

st reng th , and finally a rather sharp cut-off.The or-
der of cut-off is in ag reement with the predicted for-
mula I p+3.2U p , where I p is the ionization poten-

tial , U p =
ε
2
0

4ω
2
0

is the ponderomotive energy of the

elect ron quivering in the laser field w ith the ampli tude

of the electron field ε0 and the laser f requency ω0.

Fig.5.　High-order harmonic generation.(a)ε0=0.08 a.u.;(b)ε0=0.12 a.u.;(c)ε0=0.16 a.u.;(d)ε0=0.20 a.u.

　　(i)ε0=0.08 a.u.(2.8×10
15W/cm2)

We can see f rom Fig .5(a)that there is a cut-of f
at the 40th harmonic (I p +3.2U p =40ω0).The
harmonic st rength is nearly 10-8 and the plateau is

very distinct.

(ii)ε0=0.12 a.u.(4.2×10
15 W/cm2)

In Fig.5(b), the cut-of f for the laser peak in-
tensity ε0 =0.12 a.u.is around 78th , which is in
good ag reement w ith the predicted formula Ip +
3.2U p.The plateau is also distinct but there is a lit-
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tle decrease.

(iii)ε0=0.16 a.u.(5.6×10
15 W/cm2)

There is a cut-off at the 132nd which is still in a-
g reement wi th the formula I p+3.2U p for the laser

peak intensity ε0 =0.16 a.u.in F ig .5(c), but the
plateau is no t distinct and there is a lit tle decline.

(iv)ε0=0.20 a.u.(7.0×10
15W/cm2)

There is an abrupt decrease at the 109th har-
monic and an extended low er intensity plateau reach-
ing the 201st harmonic (Ip +3.2U p =201ω0)in
F ig.5(d).It is still in agreement w ith the formula
Ip+3.2U p.If the laser peak intensity increases , the

cut-off is at around the abrupt harmonic and there is
no extended low er intensity plateau.Meanwhile , the
o rder of cut-of f is no t in ag reement w ith the formula
Ip+3.2U p.We think that these harmonic character-

istics indicate that the laser peak intensity reaches the

saturat ion intensi ty.For this system the saturation

intensity is around 0.20 a.u.

In summary , we have presented the asymptotic
boundary conditions for solving the time-dependent
Schrödinger equation of a short-range model po tential
in an intense laser field. The time-dependent
Schrödinger equation is discret ized into the inhomoge-
neous linear canonical equations and is computed by

using the symplectic algorithm.The behavior and
high-order harmonic generation of the laser-atom in-
teraction for short-range po tential in the intense laser
field by using the asymptotic boundary conditions and

the symplectic algorithm are investig ated , we choose
the short laser pulses of w avelength 828 nm (ω=
0.055 a.u.)and intensities in the range of 1.7×1015

～ 7.00×1015 W/cm2(ε0=0.05 ～ ε0=0.20 a.u.).
The elect ric field profile of the laser is taken as the

square of sine w ith 5 light periods.We compute the
evolution of the norm of the wavefunction inside the

boundaries w ith time and the behavio r of the wave-
function for dif ferent calculations w ith the boundaries

X 0=600 a.u.and X 0 =800 a.u.The norm of the
w avefunction inside the boundaries is less than or e-
qual to 1 , the spatial dist ributions of the w avefunc-
tion is the same fo r different calculations with differ-
ent boundaries.These results have verified that our
numerical method is reasonable and ef fective.Proba-
bility density of the w avefunction and the time evolu-
tion of the population on bound state are calculated.
We also study high-o rder harmonic generation of

sho rt-range po tential in the laser field for dif ferent
laser peak intensity;the order of cut-of f is in agree-
ment w ith the predicted formula Ip +3.2U p.The
saturation intensity is thought to be around 0.20 a.u.
fo r this system.
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