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Abstract

The asymptotic boundary condition to solve the time dependent Schridinger equation for a short-range model potential

in an intense hser field is presented. The condition is obtained by means of the asymptotic behavior of the short-range model potential in

the sufficiently large distance and Fourer transformation, and then the time-dependent Schis dinger equation is discretized into an inhomo-

geneous linear canonical equation. The inhomogeneous linear canonical equation is solved using the symplectic algorithm. The calkulted

wavefunctions, time-evolution of the population on the bound state and the high-order harmonic generation verify that our numerical

method is reasonable and effective.

Keywords:

With the devolvement of laser techniques, laser-
atom interaction has become one of the very interest-

("3 " n recent years, a number of experi-

ing topics
ments on intense laser pulses probing laser-atom inter-
action have produced many new results, such as mul-
tipho ton ionization (MPI) rates, above-threshold ion-
ization (ATI) and high-order harmonic generation
(HOHG)” ™7, The high-order harmonics up to or-
der 300 (with the maximum energy about 0. 5 keV)
have been observed in recent experiments in helium
atom'®”, which has been in the “water windows”
range. A lot of theoretical work has been developed in
understanding laser-atom interaction, for example,

one dimensional binding potential in space has the

form V(x)=—2/ |x*+a’, — o x< o3 where
Z 1is the effective charge and a is a short-range cut-off
“soft”

Coulomb potential. Z and @ are introduced to remove

This is a quasi-Coulombic or °

parameter.
the singularity at origin and to adjust the depth of the
potential well, and most properties of a real atom can
be produced by adjusting the parameters Z and
a'®*. The ionization rates and harmonic generation
for a hydrogen atom were calculated by solving the
time-dependent Schrsdinger equation''® and by the
state-specific expansion approach! " The MPI rates,
the spectra of harmonic generation, above-threshold

ionization and photoelectron angular distribution were

asymptotic boundary condition. high-order harmonic generation. symplectic algorithm.

computed from the response of He to strong laser

[12.13) B o nue

pulses There are many methods ®~
merically solve the time-dependent Schridinger equa-
tion in an intense laser field. Owing to the complexity
of an atom in a laser field, the artificial boundary con-

4 or a mask function ',

ditions. e. g. an absorber!’
are often employed to calculate the time-dependent
Schrodinger equation so as to eliminate the reflection

of the wavefunction on the boundaries.

As we know, if we do not consider the effect of
atomic potential, or the atomic potential is so small
that it can be neglected, the atom in a laser field is e-
quivalent to the motion of the electron wavepacket in
the laser field. In this paper, we consider the behav-
iors and high-order harmonic generation for a short-
range model potential in the intense laser field. Be-
cause the potential is short-range, we neglect the ef-
fect of the short-range potential in the sufficiently
large distance. Based upon this idea, the asym ptotic
boundary conditions for solving the time-dependent
Schrodinger equation of a short-range model potential
in an intense laser field is developed by using Fourier
transformation in the sufficiently large distance, and
then the time-dependent Schro dinger equation is dis-
cretized into an inhomogeneous linear canonical equa-

tion by using the asymptotic boundary conditions.
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Thus the solutions can be obtained by using the sym-
plectic algorithm.

1 Asymptotic boundary conditions

In the length gauge, the one-dimensional time-
dependent Schrédinger equation of the atom in the
laser field reads (in atomic units)

2
igaq{x, t):[_%%—'_ V(x)—E(t)x] 4’(.)(:9 t)9

(t =0, — ool x <+ o), (1a)
Hx, 00 = ¢ (x), L e Pdx=1,
(— ool x <+ oo, )
with the short-range model potential given by
Vi) = —20 )

cosh?(ax )’

This short-range model potential has the follow -

ing properties:

I. V(x)= V(= x), to ensure that parity is a
good quantum number.

II. When | x| is not very big, | 7 (x)|

monotonously decreases.

III. There is a finite number of bound states. If

we choose a=2/( J1_7— 1), Up= 2> and S =
%( JH—SUO/ 012*1), there are two bound states

for this short-range potential. The energies are E,=
2
— 5 (S=m)% n=0. 1. Thus Eo=—10.5, E,=

—0. 0646603, and the corresponding eigenfunctions

are
2FE

¢ = Ao[1—tanh®(ax)] ** 3

—2E
¢t = 4, tanh(ax)[1— tanh*(ox)] > , 4
where Ao and A1 are the normalized constant. We
add the laser-atom interaction in dipole approximation
e(t)x = g f(t)cos(wpt) x. 5

The vector potential 4 (¢) is related to the electric-
free amplitude by

() =— 14 = wf(Deos(won).  (6)

where €y is the peak intensity of the laser, f (#) is
the function that describes the temporal shape of the

pulse and the light is assumed to be linearly polarized,
and £ ()= sin> (D).

In order to obtain the wavefunction ¥ x, 1), we
must solve Eq. (1) numerically in the space infinite
domain (— oo, +-©0). However, it is impossible to
solve the equation numerically to the infinite bound-
ary, and the computation must be implemented in the
finite domain. Thus the difficulty to directly solve the
time-dependent Schisdinger equation of a short-range
model potential in an intense laser field is to find the
proper boundary conditions.

In this section, we concentrate upon the con-
struction of the asymptotic boundary conditions. The
initial condition is taken as the ground state eigen-
function, i. e. ¥ (x)= %. Suppose that there is a
sufficiently large parameter Xo=> 0. If | x | = X,
then the potential ¥ (x ) and the initial condition
P(x) are very small and can be neglected; because
the potential ¥ (x) is short-range, which attenuates
monotonously with the increase of | x|. We omit the
effect of the short-range potential in the sufficiently
large distance. Eq. (1a) becomes

2
la_ziq{x’t):[*%%i E(t)x] ¢(X9t)9
(t= 0, — o<l x <<+ o). 7

Eq. (7) and Eq. (1b) can be solved by Fourier

transformation. After Fourier transformation, Eq.
(7) and Eq. (1b) can be rewritten as;

O w()et) | . O w(t), 1)
i a +ie(t) aw (1)

— %wz $w() 1),
HO, w(0)) = ¢(w(0)).

Its solution is
Hw (1), )= (P(w(O))exp[ IEq(t)}
exp (—ia()w(Q))
exp —éwz(O)t .
After inverse Fourier transformation, we can obtain

the solution of Eq. (7
¥ (xy 1) = —exp iA(t)xéq(t)]

2 Jmt
') . o o I\2
°Jw(z°(x/)exp[l(x a(t)— x )] dx's

2t
C))

)

t
where 4 (1)=— JO e(¢)dt’ is the vector potential,

t t
a(t)=— JO A(Hde" and ¢ (D= JO A (Hdr

Eq. (9) is the Volkov function, which expresses an
electron wavepacket in a laser field. For | x| =X,
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¢ (x)=0, then

¢ (x, t)_zlJn_itexp[—iAx—i—zq‘]
:FXO ! - - ! /
J . P(x )exp[i(xa—xﬂ dx .

2t

Because | x|™ X is a sufficiently large real number,
when x' € [ — Xo, Xo], the integral function is a
rapidly oscillating function. According to the phase
integral method ', we can obtain

X / [ (iX—a—x/)z] /

JXO(P(x dexp)| i 2 ] dx

~ [Tt A+ DPEX— .

Thus Eq. (9) can be written as the form at x =
J—r)(09

2
cP(EXg— ). 1o

Wx, ) ‘x:i’Xo :exp[ id(Ex0)—i+

Let us now consider the behavior of the wave-
function of Eq. (1) on the boundaries. For the short-
range potential (2), we can find a sufficiently large
parameter Xo=>0, if | x [ == Xo. then ¥ (x) and
P (x) are very small. Thus Eq. (10) reflects the
asymptotic behavior of the wavefunction of Eq. (1)
with the initial wavefunction ¥(x). That is to say,
in the domain (— o, Xo] and [ X0, +©°), the solu-
tions of Eq. (1) are the same as the solutions of Eq.
(7) and Eq. (1b). Therefore, on the sufficiently
large boundary x=-— X0 and x= X0, Eq. (10) can
be used as the boundary conditions of Eq. (1). We
call Eq. (10) the asymptotic boundary conditions.
Thus Eq. (1) can be solved numerically in the finite
domain [ — Xo, Xo] by using the asymptotic bound-
ary conditions (10).

Note that if the initial wavefunction ¢ (x) is

normalized, the wavefunction ¥ x, ¢) is also normal-
too

izedj | x, t)|*dx=1. Therefore, the norm of

the wavefunction inside the boundaries is given by

+XO
N—JX | Wx,t) Pdx

0

X,
:l_J\ ‘ 4’()6, t) |2dx

— o0

Yoo
—J | dx, 1) Pdx<<1. an
+X

0
Eq. (1D results from the electron wavepacket mov-
ing outside the boundary. In the computation the
boundary is much larger than the maximum radius of

the quiver motion of the electron, the probability of
the electron outside the boundaries is very small, and
the electron that has gone outside the boundaries is
ded as ionization' . .
regar as lonization . Thus we ignore the contri
butions of the wavefunction outside the boundaries in
the following computation. This is a good approxima-
tion in case that the boundaries are properly large.

2 Numerical recipe

The fundamental theorem of Hamiltonian me-
chanics says that the time-evolution of the Hamiltoni-
an system is the evolution of symplectic transforma-
tion. In this sense, we say that the Hamiltonian sys-
tem has a symplectic structure. Therefore, Ruth
and Feng[la presented the symplectic algorithm for
solving the Hamiltonian system, and found a new

method for solving the Hamiltonian system .

Symplectic algorithm is a difference method that
preserves the symplectic structure, and is a better
method in the long-time many-step calculation and
can preserve the structure of the system.

At present, the study and application of sym-
plectic algorithm has been developed ' ™*. For ex-
ample, symplectic algorithm is used to calculate the
water wave equation, Kdv equation, Schrodinger e-
quation, Celestial mechanics equation and so on.

We have presented the symplectic scheme-m atrix
eigenvalue method and the symplectic scheme-shoot-
ing method for solving the

1 . [26~29
Schrodinger equation recently ;

time-independent
and demon-
strated that our numerical method is stable and effec-
tive for solving the eigenvalue of the time-independent
Schrodinger equation.

We can also use the sym plectic algorithm to solve

Eq. (1) with the boundary conditions (10). Let
W, )=g(xs OFip(x, 1)y Ulx, )=V (x)—
e(t)x. Suppose N is a sufficiently large positive in-
teger, the whole space (— Xo, +Xo) can be divided
into 2N equal segments, and the length of each seg-
ment is #=Xo/ N. Denoting xj= jh, j=— N, — N
+1, --» —1,0, 1, - N—1, N, such that boundary
conditions (10) can be written as:

Wt, —Xo)= g yTip s

At + Xo) = gn +ipN.
Substituting the symmetry difference quotient for the
PP b 29+ by
x’ n’ '

12)

partial derivative, we have
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Eq. (1) can be discretized into the following (2N —
1 )-dimensional Hamiltonian inhomogeneous linear

. .29
canonical equatlon[ ]

P=— SO+ Ya
: 13)
Q: SP — Yl,
[ 1 1
Ut s 24>
_ 1 1
252 U-wia 3o
s = 0 -
0
0

Ifwelet Z= P 0", v= (YT, Y;)T, then in-

homogeneous linear canonical equation can be written

as the form
C—Gz—y'y=r'cz—J'y. a4
[0 *é'] 1 7[ 0 é] B
w here G—[S =J C, J= g , C=
S 0 .
[0 S] . The solutions of Eq. (14) are

t
Z() = go ’zo—Jogg J'y (ode. A5

In particular, the time-evolution from one time to an-

other is
tht

L
erH _ ng /rHZk_J ngGHlJilY(T)dT, 16)
t

t
where gTG’t:exp J G(t)dt| is a symplectic trans-

formation. We have recently presented the sy mplectic
algorithm for solving the inhomogeneous linear canon-
ical equation (14), and in Ref. [ 29] we give a two-
order symplectic scheme for solving the inhomoge-
neous linear canonical equation (14). From Eq.
(16), we can know that the normalization of the sys-
tem is conservative if there is no inhomogeneous term
—1 e T fe1—1
J Y. Thus, the term of Jz g, J Y (odr

k
expresses the escape of the electron wavefunction to
the outside boundaries from # to #i+1.

3 Results and discussions

To investigate the behavior and high-order har-
monic generation . of the laser-atom interaction for

where P= (p—nN+1, =5 p—1, po, pls =% pN—1 )
Q: (Q*NJrla v d—15 q0s q1s s C]N*I)Ta Y, =
1
2h

gv)" and “T” denotes the transposed matrix, § is a

(prs 0, -+, 0, PN )T’ Y2:2#(q7]v, 0, - 0,

symmetry matrix

0 0
0 0
.
_ 1 1 .
2h° Uyt n? 2h°
_ 1 1
0 2h* Un-1 7+ h2

short-range potential (2) in the intense laser field by
using the asymptotic boundary conditions (10) and
the symplectic algorithm, we select the short laser
pulses of wavelength 828 nm (w=0.055 a.u.) and
intensities in the range of 1. 7X 10" ~ 7. 00X
10" W/em® (€0=0.05 ~€=0.20 a.u. ). The elec-
tric field profile of the laser is taken as the square of
sine with 5 light periods. The initial state ?(x) is
taken as the wavefunction (3) of the ground state.

3.1 Evolution of the norm of the wavefunction in-
side the boundaries with time

To illustrate the numerical method, we first
compute the evolution of the norm of the wavefunc-
tion inside the boundaries with time. From Eq.
(11), one knows that the motion outside the bound-
aries makes the norm of the wavefunction inside the
boundaries less than or equal to 1. In the computa-
tion, we choose Xo=1000 a.u. The evolution of the
norm of the wavefunction inside the boundaries with
time is shown in Fig. 1. Fig. 1(a) shows the norm
of the wavefunction for intensity €g=0.05 a.u. The

norm of the wavefunction is preserved to be 10
because the intensity is very small and most electrons
move inside the boundaries. Fig. 1(b) shows the
norm of the wavefunction for intensity €0=0. 14 a. u.
However, the norm of the wavefunction inside the
boundaries is only a little smaller than 1 after the
maximum of the laser field, which indicates that the
probability of the electron outside the boundaries is
very small and thus the calculation with the function
inside the boundaries is convergent.
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Fig. 1. Evolution of the norm of the wavefunction inside the

boundaries with time. (a) €y=0.05 a. u.; (b) ¢;=0. 14 a u.
3.2 The behavior of the wavefunction

To verify the numerical method, we also com-
pare the behavior of the wavefunction computed using
different boundary parameter Xo. Fig. 2 shows the

spatial distributions of the w avefunction at =500 a. u.
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Fig. 2
€p=0.05a u (a) The real part of the wavefunction, (the inset shows
the result from — 600 to — 500); (b) the imaginary part of the wave-
function ( theinset diow s thearesuly from 50010, 600).

and the peak intensity of the laser gg=0. 05 a. u.
Two calculations with the boundaries of Xo=600 a. u.
and Xo=800 a.u. are carried out. The dot line is
calculated in the range of [ — 800, 800] and the solid
line is calculated in the range of [ — 600, 600] . The
two calculations yield results that are almost not dis-
tinguishable inside the boundaries. The insets show
the wavefunctions near the boundaries. It can be seen
from the figures that the solid line and the dot line are
almost the same, which verifies that our numerical
method is reasonable and effective.

3.3 Probability density | 91? (or modulus squared)
of the wavefunction

The numerical wavefunction may be the charac-
teristic of the above-threshold-ionization peak. Plots
of the probability density will usually reveal this pro-
cess. Fig. 3 shows the probability density | 9% ver
sus X at t=500 a.u. for different laser peak intensi-
ty. The plateau regions are about (— 350, 350 ),
(—450, 450>, (— 700, 700) and (— 900, 900) for
the laser peak intensity of &= 0. 08 a. u., & =
0.12 a.u., €0=0.16 a. u., and €0=0.20 a.u., re-
spectively. The higher the laser intensity is, the
wider the plateau region is. Since electron emission
continuously takes place over the duration of the cal-
culation, for higher laser intensity, the probability
densities can extent to far distance.

3.4 Time evolution of the population on the ground
state (the initial state) and the bound state

The total time-dependent ionization population
can be calculated by the formula;

Pion(t):J QG Kx, ) Pdk
= 1—2 LRG| i, o) P

bound
where (x) isany state of the continuum, $(x) is
the wavefunction of the bound state. The summation
is over all the bound state ¥ (x) when the field has
been tumed off. Thus the population of the bound
state is

Prowmd (1) = 2 1 {hGo) [ a0y P

foumd
Because there are only two bound states for the short-
range potential, the population on the ground state
(the initial state) and all bound states are
Pu(o =1<CH0o [ d, o) P
Py = [ () | e, ) P

+1CH G | de, o) P
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In the computation, we choose Xo= 1000 a.u., and
the time evolution of the population on the ground
state and all bound states with time are shown in
Fig. 4 for short-range potential in the laser field with

Probability |yf?

1E-12 A . . . A .
-800-600—-400-200 0 200 400 600 300
X(au)

1E-12 .

M et
— 1000800~ 600—400-200 0 200 400 600 800 1000 - 1000- 800 600- 400200 0 200 400 600 800 1000

X(au)

different peak intensity of the laser. In Fig. 4, the
dot line is the population of all bound states (i.e. the
ground state and the first excited state) and the solid
line is the population of the ground state. It can be
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Fig. 3. Probability density | #2(or modulus squared of the wavefunction) vs X at =500 a u. (a) €= 0. 08 a. u.; (b) g=
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seen from Fig. 4 that the higher the laser peak inten-
sity is, the smaller the minimum probability on the
bound state is, which reveals that the population on
the bound state decreases with the increase of the
laser peak intensity. For low laser peak intensity,
most of the population is in the bound state, especial-
ly for 8p=0.08 a.u., itis very clear that the ground
state population is more than 0. 93 and oscillates.
However, with the increase of the laser peak intensi-
ty, the bound state population becomes smaller and
smaller. For §g=0.20 a.u. and #+=300 a. u., the
bound state population is almost zero. This means
that most of the population is in the state of the con-
tinuum for higher laser peak intensity.

3.5 High-order harmonic generation

We also investigate high-order harmonic of the
short-range potential in the laser field. The dipole ac-

celeration is given by

X, ov
d(t):*J ‘V(x,t)g‘l’(x,z)dx+E(t).
x,

(

) [T T r—rr—r—rr—r T -y

B 1 7530 25 30 35 40 45 50
Harmenic order @/ @),
:
: =0.16 a.u.
1E-3 &
o 1E-5
8 1B
= B9
1E-11
1E-13
1E-15
Bl 153073560 75 50 105 120 135 150
Harmonic order @/ @,
Fig. 5. High-order harmonic generation. (a) €= 0. 08 a. u.;

(i) €0=0.08 a.u. (2.8X10"° W/em?)

We can see from Fig. 5(a) that there is a cut-off
at the 40th harmonic (I, +3.2Up,=40wo). The
harmonic strength is nearly 10 ® and the plateau is
very distinct.

The Fourier transformation of d (¢) is calculated by

—L_ I—J Tzd(t)eﬁ””dt
Tr— 2 Tl ’

d(w)= T1 w

The intensity of the high-order harmonic spectrum is
proportional to | d Cw)[?. In the computation, we
choose Xo=1000 a.u. Fig. 5 displays the high-order
harmonic spectrum of short-range potential in the
laser field with different peak intensity of the laser
the distribution of the harmonic spectrum exhibits the
same characteristic behavior, i.e. a rapid decrease for
the first few low-order harmonics, then a plateau
where all the harmonics have nearly the same
strength, and finally a rather sharp cut-off. The or-
der of cut-off is in agreement with the predicted for-
mula 7,7+ 3.2U,, where I, is the ionization poten-

€
. 0 . .
tia, Up= 42 18 the ponderomotive energy of the
0

electron quivering in the laser field with the am plitude
of the electron field €0 and the laser frequency wo.

®)

§=012au.

e vy ey

0 10 20 30 40 50 60 70 80 90
Harmonic order @/ @,

! )
&=020au

ld (o)

1E-18
1E-20

0 20 40 60 80 100120140160 180200220240
Harmonic order @/ @,

(b)) eg=0.12 a u.; () eg=0.16 au; (d) g=0.20 a u.

Gi) £=0.12 a.u. (4.2X10" W/em?)

In Fig. 5(b), the cut-off for the laser peak in-
tensity €0=0. 12 a. u. is around 78th, which is in
good agreement with the predicted formula 1, +
3.2U,. The plateau is also distinct but there is a lit-
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tle decrease.

Gii) ©=0.16a.u. (5.6X10° W/cm?)

There is a cut-off at the 132nd w hich is still in a-
greement with the formula 7,4+ 3.2U, for the laser
peak intensity ©=0. 16 a. u. in Fig. 5(c), but the
plateau is not distinct and there is a little decline.

(iv) €=0.20 a.u. (7.0X< 10" W/em?)

There is an abrupt decrease at the 109th har-
monic and an extended low er intensity plateau reach-
ing the 201st harmonic (I, +3.2U,=201wg) in
Fig. 5(d). Tt is still in agreement with the formula
I,+3.2U,. If the laser peak intensity increases, the

cut-off is at around the abrupt harmonic and there is
no extended low er intensity plateau. Meanwhile, the
order of cut-off is not in agreement with the formula
I,+3.2U,. We think that these harmonic character-

istics indicate that the laser peak intensity reaches the
saturation intensity. For this system the saturation
intensity is around 0.20 a. u.

In summary, we have presented the asymptotic
boundary conditions for solving the time-dependent
Schrodinger equation of a short-range model po tential
in an intense laser field. The time-dependent
Schro dinger equation is discretized into the inhomoge-
neous linear canonical equations and is computed by
using the symplectic algorithm. The behavior and
high-order harmonic generation of the laser-atom in-
teraction for short-range potential in the intense laser
field by using the asymptotic boundary conditions and
the symplectic algorithm are investigated, we choose
the short laser pulses of wavelength 828 nm (w=
0.055 a.u. ) and intensities in the range of 1. 7X 107
~7.00x< 10" W/em? (£0=0.05 ~ €o=0. 20 a.u. ).
The electric field profile of the laser is taken as the
square of sine with 5 light periods. We compute the
evolution of the norm of the wavefunction inside the
boundaries with time and the behavior of the wave-
function for different calculations with the boundaries
X =600 a.u. and Xo=800 a.u. The norm of the
wavefunction inside the boundaries is less than or e-
qual to 1, the spatial distributions of the wavefunc-
tion is the same for different calculations with differ-
ent boundaries. These results have verified that our
numerical method is reasonable and effective. Proba-
bility density of the wavefunction and the time evolu-
tion of the population on bound state are calculated.
We also study- high-order harmonic, generation of

short-range potential in the laser field for different
laser peak intensity; the order of cutoff is in agree-
ment with the predicted formula I,+3.2U;. The
saturation intensity is thought to be around 0.20 a. u.
for this system.

Acknowledgment The authors would like to thank Pro-
fessor Zhou Z. Y. and Dr. Liu X. Y. for their helpful discus-

sions and suggestions.
References

1 Eberly J. H. et al. High-order hammonic production in multipho-
ton ionization. J. Opt. Soc. Am. B 1989, 6(7). 1289.

2 Sanpera, A. et al. Resonant and nonresonant effects in the multi-
photon detachment of a one-dimensional model ion with a shont-
range potential. J. Opt. Soc. Am. B, 1991, 8(8). 1568.

3 L’ Huillies A. et al. High-order harmonic generation in rare gases
with a I-ps 1053-nm laser. Phys. Rev. Lett., 1993, 70(6).
774.

4 Macklin, J. J. et al. High-order harmonic generation using in tense
fem tosecond pulses. Phys. Rev. Lett., 1993, 70(6). 766.

5 Shin, H. J. et al. Generation of nonadiabatic blueshift of high har-
monics in an intense femtosecond hser field. Phys. Rev. Lett.,
1999, 83(13). 2544.

6 Schurer, M. et al. Coherent 0.5 keV X-Ray Emission from Heli-
um Driven by a Sub-10-fs Laser. Phys. Rev. Lett., 1998, 80:.
3236.

7 Chang, Z. H. et al Generation of coherent soft X rays at 2. 7 nm
using high harmonics. Phys. Rev. Lett., 1997, 79. 2967.

8 Lius W. C. etal. Closedfomm solutions of the Schi dinger equa-
tion for a model one dimensional hydrogen atom. J. Phys. B: At.
Mol. Opt. Phys., 1992 25. L517.

9 Su Q. et al. Model atom for multiphoton physics. Phys. Rev. A,
1991, 44. 5997.

10 LaGattuta, K. J. Two-photon ionization rates of atomic hydrogen:
com parison of numerical and analytical techniques. J. Opt. Soc.
Am. B 1993, 10(5). 958.

11 Dionissopoulou, S. et al. Ionization rates and hammonic generation
for H interacting with laser pulses of A= 1064 nm and peak intensi-
ties in the range 2X 103~ 2X 10" W°em 2. J. Phys. B At.
Mol. Opt. Phys., 1996 29. 4787.

12 Nicolaides, C. A. etal. The significance of electron correlation and
of state symmetries in the interaction of strong laser pulses of 5eV
with He. J. Phys. B: At. Mol. Opt. Phys., 1998 31. L1.

13 Mercouris T. et al. Multiphoton response of He to short laser
pulses of wavelength 248 nm and intensities in the range 10~ 10W
*em” 2. J. Phys. B: At. Mol. Opt. Phys., 1997, 30. 4751.

14 Lappas, D. G. et al. Generation of attosecond xuv pulses in strong
laser- atom interactions. Phys. Rev. A, 1998, 58. 4140.

15 Hu S. X. et al. Dynamics of an intense hser driven multi well
system: A model of ionized clusters. Phys Rev. A, 1997, 56:
3916.

16 Heading, J. An Introduction to Phase Integral Methods. London:
Methuen and Co., 1962.

17 Ruth R. D. A canonical integration technique. IEEE T rans.
Nuc. Sci., 1983, 30: 2669.

18 Feng K. Difference schemes for Hamiltonian formalism and sym-
plectic geometry. J. Comput. Math., 1986, 4. 279.

19 Leimkuhler, B. J. et al. Symplectic numerical integrators in con-
strained Hamiltonian system. J. Comput. Phys., 1994, 112:
117.



Progress in Natural Science

Vol. 14 No.7 2004

581

20

21

22

23

24

25

Yoshida, H. Construction of higher order symplectic integrators.
Phys. Lett. A, 1990, 150. 262.

Ding, P. Z. et al. Square-preserving and symplectic structure and
scheme for quantum system. Chin. Phys. Lett., 1996, 13. 245.
Zhu, W. S. etal. Numerical methods with a high order of accura-
cy applied in the quantum system. J. Chem. Phys, 1996, 104
(6): 2275.

Gray, S. K. etal. Classical Hamiltonian structures in wave packet
Chem. Phys., 1994, 100(7): 5011.

Gray, S. K. et al. Symplectic integrators tailored to the time-de-
pendent Schis dinger equation. J. Chem. Phys., 1996, 104(18).
7099.

Zhous Z. Y. et al. Study of a symplectic scheme for the time evo-

dynamics. J.

lution of an atom in an external field J. Korean Phys. Soc.,

1998, 32:. 417.

26

27

28

29

Lius X. S. et al. Numerical solution of one-dim ensional time-inde-
pendent Schid dinger equation by using sym plectic schemes. Intern.
J. Quantum Chem., 2000, 79(6). 343.

Liu, X. S. et al. Numerical solution of a tw o-dimensional time-in-
dependent Schivdinger equation by using symplectic schemes. In-
tem. J. Quantum Chem., 2001, 83(5). 303.

Liu, X. S. et al. Symplectic algorithm for use in computing the
time-independent Schibdinger equation. Intern. J.
Chem., 2002, 87(D): 1.

Liu, X. Y. et al. Thesymplectic method for solving the linear in-

Quantum

homogeneous canonical equations in 1-dimensional intense field

model Chin. J. Comput. Phys., 2002, 19. 60.



